芯片比较 XNS104 与 XNS1042 比较

www.panchip.com

目录

草	介绍	3
章	XNS1042 与 XNS104 差异比较	3
章	XNS104 迁移到 XNS1042 注意事项	6
	1.1 章 2.1 2.2 2.3 2.4 章	章 介绍 1.1 简介 2章 XNS1042 与 XNS104 差异比较 2.1 XNS1042 与 XNS104 资源比较表 2.2 XNS1042 与 XNS104 ADC 转换比较 2.3 XNS1042 与 XNS104 工作电压比较 2.4 XNS1042 与 XNS104 IO 驱动能力差别 3章 XNS104 迁移到 XNS1042 注意事项 4章 版本信息

第1章 介绍

1.1 简介

XNS1042 是一个带 12 位 ADC ,以 OTP 为程序存储基础 ,带 2.4G 高速无线收发芯片的单片机。 XNS1042 内部有 2K*14bit OTP 程序存储器以及 128byte 数据存储器。

相对 XNS104 而言,系统资源会更加丰富,但两个芯片存在较多差别,不能简单的认为 XNS1042 就是 XNS104 的升级版,而应该把 XNS1042 当做全新的一颗芯片来对待, 所以在将之前 XNS104 的程序迁移到 XNS1042 上,除了多看 XNS1042 和 PMS132 说明书外,还请关注本文档中所列出的具体差异,以便更好地完成硬件方案的转换。

第2章 XNS1042与XNS104差异比较

2.1 XNS1042 与 XNS104 资源比较表

芯片	XNS104	XNS1042		
计数器	1 个 16bit 计数器	1 个 16bit 计数器		
PWM 生成器	2个8bitPWM生成器	2个8bitPWM生成器,1个11bitPWM 生成器		
ADC	6 通道 12bitADC	6 通道 12bitADC		
程序存储器	1.5KW OTP	2KW OTP		
数据存储器	88byte	128byte		
可用 I0 数	9	9		
LVR	8 段 LVR 4. 1V, 3. 6V, 3. 1V, 2. 8V, 2. 5V, 2 . 2V, 2. 0V, 1. 8V	8 段 LVR 4. 0V, 3. 5V, 3. 0V, 2. 75V, 2. 5V, 2. 2V, 2. 0 V, 1. 8V		
比较器	无	有		

2.2 XNS1042 与 XNS104 ADC 转换比较

XNS1042 ADC 转换过程

- (1) 通过寄存器 adcrgc 配置参考高电压
- (2) 通过 adcm 寄存器配置 AD 转换时钟信号
- (3) 通过 padier,pbdier 寄存器配置模拟输入引脚
- (4) 通过 adcc 寄存器选择 ADC 输入通道
- (5) 通过 adcc 寄存器启用 ADC 模块
- (6) 启用 ADC 模块后, 延迟一段时间

条件 1:使用内部参考高电压如 2V, 3V, 4V 或者输入通道是 band-gap 时,并且当 200 个 AD 时钟仍小于 1ms,所需的延时时间必须超过 1ms;如果 200 个 AD 时钟已经超过 1ms,那么延迟时间只需要 200 个 AD 时钟即可。

条件 2: 没有使用任何内部参考电压如 2V, 3V, 4V, band-gap 时, 延迟时间仅需 200 个 AD 时钟

(7) 执行 AD 转换并检测 ADC 转换数据是否已经完成

addc.6 设置 1 开始 AD 转换并且检测 addc.6 是否为 1

(8) 从 ADC 寄存器读取转换结果

先读取 adcrh 寄存器的值然后再读取 adcrl 寄存器的值

(9)应用时,如果是关掉 ADC 模块后再重新启动 ADC,在进行 ADC 转换之前请重新执行如上步骤 6,确保 ADC 模块已经准备好。

XNS104 ADC 转换过程

- (1) 利用 adcrgc 寄存器编程设置参考高电压
- (2) 利用 adcm 寄存器配置 ADC 转换时钟
- (3) 利用 padier, pbdier 寄存器配置模拟输入引脚
- (4) 利用 adcc 寄存器选择 ADC 输入通道
- (5) 利用 adcm 寄存器配置 ADC 分辨率
- (6) 利用 adcc 寄存器启用 ADC 模块
- (7) 利用 adcc 寄存器置位 ADC 转换过程控制位启动转换(set1 adcc.6)
- (8) 等待完成 AD 转换标志位置位,方法可以用如下的任一种:

使用命令 wait1 adcc.6 来等待完成的标志位

等待 ADC 的中断

(9) 读取 ADC 的数据寄存器

读取 adcrh, adcrl 数据寄存器

(10) 下一个转换,请重复上述步骤。

2.3 XNS1042 与 XNS104 工作电压比较

XNS104 工作电压:

	系统时钟(CLK)* =					Under_20ms_VDD_ok** = Y/N
	IHRC/2	0		8M		$VDD \ge 2.5V / VDD \ge 3.1V$
f _{SYS}	IHRC/4	0		4M		$VDD \ge 2.2V / VDD \ge 2.5V$
	IHRC/8	0		2M		$VDD \ge 2.2V / VDD \ge 2.2V$
	ILRC		37K		Hz	VDD = 5.0V

XNS1042 工作电压:

f_{SYS}	系统时钟 (CLK)* = IHRC/2 IHRC/4 IHRC/8	0 0 0	551/	8M 4M 2M	Hz	VDD ≥ 3.5V VDD ≥ 2.5V VDD ≥ 2.2V
	ILRC		55K			VDD=5.0V
	f _{sys}	f _{SYS} IHRC/2 IHRC/4 IHRC/8	f _{SYS} IHRC/2 0 0 0 1HRC/4 1HRC/8 0	f _{SYS} IHRC/2 0 0 0 0 0 0 0 0 0	IHRC/2 0 8M IHRC/4 0 4M IHRC/8 0 2M	f _{SYS} IHRC/2 0 8M Hz 1HRC/8 0 2M Hz 1HRC/8 0 2M Hz 1HRC/8 1HRC/8

2.4 XNS1042 与 XNS104 IO 驱动能力差别

XNS104:

I _{OL}	IO 引脚灌电流 限于 PA5	8	11 4	14 5.5	mA	VDD =5.0V, V _{OL} =0.5V
I _{OH}	IO 引脚驱动电流	-6	-8	-10	mA	VDD =5.0V, V _{OH} =4.5V

XNS1042

I _{OL}	IO 输出灌电流 PA5 PA0, PA3, PA4 PA6, PA7, PB0, PB1, PB3 PB2, PB5, PB6 PB4, PB7 (正常输出) PB4, PB7 (低输出)	23 20 13 13 40 20	mA	V _{DD} =5.0V, V _{OL} =0.5V
I _{OH}	IO 输出驱动电流 PA5 PB4, PB7 (正常输出) PB4, PB7 (低输出) 其他 IO	0 -20 -10 -10	mA	V _{DD} =5.0V, V _{OH} =4.5V

第3章 XNS104迁移到XNS1042注意事项

- (1) 请注意 XNS1042 与 XNS104 在使用 ADC 时的时序要求, XNS1042 在启用 ADC 模块后,需要一定的延时,具体参考 XNS1042 ADC 转换过程。另外 XNS1042 的 ADC 分辨率不可设置,只能为 12bit
 - (2) XNS104 与 XNS1042 在 IO 翻转速度上有差别,同样的电压、同样的频率下 XNS1042 IO 翻转速度比 XNS104 要慢,如在 XNS1042 上做快速 IO 切换操作(如 IO 模拟 SPI)时,程序需要保证 IO 从 1 到 0 有足够的时间,最好能在执行 IO 从 1 到 0,后面跟一到两条 NOP 指令即可。
 - (3) XNS1042 系统频率设置到 8M(即 IHRC/2)时,供电电压需在 3.5V以上,所以 3.3V供电系 统无法使用 8M的速率;系统频率设置到 4M(即 IHRC/4)时,供电电压需在 2.5V以上。
- (4) XNS1042与 XNS104工作电压上有差别,具体电压使用范围请看 PMS132说明书。
- (5) XNS1042 和 XNS104 的管脚定义也存在差别,具体定义请看 PMS132 说明书。

第4章 版本信息

版本	日期	内容
1.0	2017-05-23	chenhuan 新建

